期刊名稱(chēng):Molecular Plant
影響因子:21.949
發(fā)表單位:中國(guó)科學(xué)院遺傳與發(fā)育生物學(xué)研究所
研究部位:高等植物及綠色生物
研究方法:磷酸化蛋白質(zhì)組、PRM靶向蛋白組
研究背景
2023年11月27日,中國(guó)科學(xué)院遺傳與發(fā)育生物學(xué)研究所汪迎春團(tuán)隊(duì)在Molecular Plant在線發(fā)表了題為GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility?的研究論文。論文中報(bào)道了一種具有突破性的植物磷酸化蛋白質(zhì)組學(xué)新技術(shù)。該技術(shù)采用了簡(jiǎn)化、穩(wěn)健的工作流程,有效地克服了植物磷酸化蛋白質(zhì)組分析的主要技術(shù)難點(diǎn),能高靈敏度、高特異性快速地富集植物磷酸肽。利用該技術(shù)可定量分析不同植物的磷酸蛋白質(zhì)組,其分析深度之深、定量重復(fù)性之高前所未有,有望成為植物磷酸蛋白組學(xué)的通用技術(shù)。由于該技術(shù)主要面向高等植物及其它綠色生物(如衣藻),且操作簡(jiǎn)便,極大地降低了實(shí)驗(yàn)所需的人力和試劑費(fèi)用,因此命名為GreenPhos (綠磷)。
蛋白質(zhì)磷酸化在植物的生長(zhǎng)、發(fā)育、環(huán)境適應(yīng)以及作物的產(chǎn)量和品質(zhì)調(diào)控中發(fā)揮著重要的作用。深度解析磷酸化蛋白質(zhì)組是全面理解磷酸化如何行使功能的有效手段。然而,與動(dòng)物相比,植物磷酸化蛋白質(zhì)組的深度解析在技術(shù)上更具挑戰(zhàn)性。因?yàn)橹参锛?xì)胞具有致密的細(xì)胞壁和大量的包括色素在內(nèi)的次生代謝物,前者極大地增加了蛋白質(zhì)提取的難度,而后者嚴(yán)重地干擾了磷酸肽富集的效率和特異性。
實(shí)驗(yàn)材料
野生型擬南芥(Col-0)幼苗在10%漂白劑中表面消毒,在無(wú)菌去離子水中漂洗,然后播種在含有1%瓊脂,pH為5.8的半強(qiáng)度Murashige和Skoog (1/2 MS)培養(yǎng)基上。種子在4℃的黑暗條件下發(fā)芽2天。幼苗在1/2 MS固體培養(yǎng)基上生長(zhǎng)10天,然后轉(zhuǎn)移到1/2 MS液體培養(yǎng)基上,再培養(yǎng)16小時(shí)。在鹽脅迫實(shí)驗(yàn)中,將幼苗轉(zhuǎn)移到添加或不添加(對(duì)照) 100mM NaCl的新鮮培養(yǎng)基中,根據(jù)需要孵育30 min或120 min。
研究結(jié)果
1.GreenPhos的開(kāi)發(fā)——一種穩(wěn)定高效的純化植物磷酸肽的方法
從植物組織中高效提取蛋白質(zhì)是深入分析植物蛋白質(zhì)組和磷酸化蛋白質(zhì)組的第一步和關(guān)鍵一步。為此,作者比較了SDS、GdnHCl和SDC等不同變性劑對(duì)擬南芥葉片中蛋白質(zhì)的提取性能。結(jié)果發(fā)現(xiàn)SDS-和SDC-提取的蛋白的性能相似,但優(yōu)于GdnHCl。植物樣品相較于動(dòng)物樣品含有較低濃度的蛋白質(zhì),因此作者優(yōu)化了磷酸化蛋白質(zhì)組的提取和富集的方法,即用SDS或GdnHCl緩沖液提取的蛋白質(zhì)樣品,在蛋白質(zhì)消化和隨后的磷酸肽富集之前,必須去除變性劑(圖1A)。接著用氯仿-甲醇沉淀提取的樣品,去除變性劑和其他干擾生物分子(圖1A和1B)。而作者通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),SDC法提取的蛋白樣本不需要經(jīng)過(guò)氯仿-甲醇沉淀,而鑒定到的磷酸化蛋白更多,同時(shí)需要的植物材料更少。因此作者認(rèn)為SDC法更節(jié)省成本達(dá)到更好的效果,并在番茄、水稻、綠藻等生物中得到驗(yàn)證,從而確定了磷酸化蛋白組學(xué)的方法,稱(chēng)之為GreenPhos。

圖1 GreenPhos的工作流程
2.?GreenPhos與當(dāng)前磷酸肽富集方法的比較
GreenPhos與當(dāng)前基于polyMAC的磷酸肽制備方法相比,在上機(jī)蛋白等量的情況下,GreenPhos方法平均鑒定出11072個(gè)磷酸化位點(diǎn),而polymac法鑒定出9399個(gè)磷酸化位點(diǎn) (圖2B),表明GreenPhos的分析深度比PolyMAC的高18%,并且需要的樣本量更少,省去了更多的實(shí)驗(yàn)步驟和時(shí)間。與此同時(shí),作者發(fā)現(xiàn)GreenPhos的富集選擇性(92%)也高于PolyMAC的富集選擇性(54%)(圖2C)??赡茉蚴谴紊x物的存在影響了磷酸肽對(duì)TiO2珠的親和力,PolyMAC優(yōu)先富集磷酸化肽,而GreenPhos富集了更多的雙重或多重磷酸化肽(圖2D-E)??傊?,在當(dāng)前實(shí)驗(yàn)條件下,GreenPhos優(yōu)于基于polyMAC的方法。

圖2 GreenPhos和基于polyMAC的方法的性能比較
為了進(jìn)一步測(cè)試GreenPhos的效率和靈敏度,作者從擬南芥葉片中提取蛋白質(zhì)(100、300、600和900μg),分別從4個(gè)樣品中分別富集磷酸肽,并通過(guò)LC-MS分析(圖3A)。通過(guò)比較鑒定出的磷位點(diǎn)和磷酸肽的數(shù)量,發(fā)現(xiàn)兩者都隨著上機(jī)量的增加而增加,達(dá)到600μg后鑒定出的磷酸化位點(diǎn)和磷酸化肽的小幅增加 (圖3A和3B)。說(shuō)明鑒定的磷酸化位點(diǎn)的數(shù)量與起始蛋白的數(shù)量不存在正相關(guān),因?yàn)長(zhǎng)C-MS在使用相同的獲取參數(shù)時(shí)是飽和的。
為了評(píng)估GreenPhos在定量磷酸化蛋白質(zhì)組學(xué)中的潛力,作者了鑒定的磷酸化肽與上機(jī)量之間的定量關(guān)系。以900μg為參照,在100、300和600μg中,檢測(cè)到的磷酸肽強(qiáng)度比與參考中磷酸肽強(qiáng)度比的中位數(shù)與理論值具有很好的相關(guān)性(圖3C)。分析結(jié)果表明,GreenPhos與單次LC-MS結(jié)合可用于從高達(dá)600μg的蛋白質(zhì)中定量磷酸肽,準(zhǔn)確度高。通過(guò)5次重復(fù)質(zhì)譜分析,評(píng)價(jià)了GreenPhos在植物磷蛋白組定量鑒定中的再現(xiàn)性。5個(gè)生物重復(fù)和5個(gè)技術(shù)重復(fù)的磷酸肽強(qiáng)度的Pearson相關(guān)系數(shù)平均分別為0.95和0.97 (圖3D和3E),表明具有較高的定量可重復(fù)性。從5個(gè)生物重復(fù)中共鑒定出磷酸化位點(diǎn)14063個(gè),其中74%的磷酸化位點(diǎn)至少在2個(gè)重復(fù)中鑒定出 (圖3F)。結(jié)果表明,GreenPhos可以在定量和定性上產(chǎn)生高度可重復(fù)性的結(jié)果。

圖3 GreenPhos的靈敏度、定量準(zhǔn)確度和重現(xiàn)性評(píng)價(jià)
4.?利用GreenPhos對(duì)擬南芥鹽脅迫誘導(dǎo)的磷酸化蛋白組分析
為了深入了解擬南芥對(duì)鹽脅迫響應(yīng)中蛋白磷酸化介導(dǎo)的信號(hào),作者使用GreenPhos和單次LC-MS檢測(cè),分析了100 mM NaCl處理30分鐘(T30)和120分鐘(T120)或未處理(T0)的擬南芥幼苗的磷酸化蛋白質(zhì)組學(xué)(圖4A)。每個(gè)處理包括3個(gè)生物學(xué)重復(fù),每個(gè)重復(fù)600μg蛋白用于磷酸肽的富集??偣矎?316個(gè)磷酸化蛋白中鑒定出12908個(gè)磷酸肽,含有15889個(gè)磷酸化位點(diǎn)。在磷酸肽中,13473個(gè)磷酸位點(diǎn)在處理的至少一個(gè)重復(fù)中包含可量化的信息。
對(duì)三個(gè)重復(fù)中至少任意兩個(gè)重復(fù)中的11128個(gè)磷酸位點(diǎn)進(jìn)行了label free定量。采用p< 0.05篩選不同處理間存在差異的磷酸化位點(diǎn)。聚類(lèi)分析顯示,磷酸化蛋白形成了四個(gè)不同的簇,顯示了鹽脅迫誘導(dǎo)的磷酸化水平在所有處理中表現(xiàn)出顯著差異(圖4B)。在簇1中,磷酸化水平在鹽脅迫30 min后適度下降,在120 min后升高。在簇2中,磷酸化水平在30 min時(shí)總體上升,而在120 min后維持在相似的水平。在簇3中,磷酸化水平在30 min時(shí)沒(méi)有顯著變化,在120 min時(shí)下降。在簇4中,磷酸化水平在30 min鹽脅迫下下降,并在120 min時(shí)維持在類(lèi)似的水平。

圖4 利用GreenPhos定量鑒定鹽脅迫下分析擬南芥幼苗磷酸化蛋白組
使用Fisher’s-exact對(duì)每個(gè)簇中的磷酸化蛋白進(jìn)行GO和KEGG富集分析(圖5)。與報(bào)道一致,在細(xì)胞組分條目,細(xì)胞核、細(xì)胞質(zhì)和細(xì)胞膜蛋白在所有簇中被顯著富集。在分子功能條目,激酶活性在簇1、2和4中富集,而在簇3中不富集,但是蛋白質(zhì)去磷酸化的在生物過(guò)程條目在簇3中富集。結(jié)果表明,激酶的磷酸化激活和磷酸酶的去磷酸化是鹽脅迫誘導(dǎo)的重要反應(yīng)。

圖5 鹽脅迫誘導(dǎo)的差異磷酸化蛋白的功能富集
激酶通常通過(guò)識(shí)別特定的序列motif來(lái)磷酸化它們的底物,即磷酸化motif。使用motif-x算法?(https://meme-suite.org/meme/tools/momo)選擇在任意兩個(gè)處理中表現(xiàn)出差異水平的磷酸化位點(diǎn)進(jìn)行磷酸化motif分析。在處理T30/T0之間顯示磷酸化增加的磷酸化位點(diǎn)中,四個(gè)motif?(SP、SDxE、SDxD和LxxxxS)被過(guò)度表達(dá),而兩個(gè)motif?(SP和RxxS)在顯示磷酸化降低的磷酸化位點(diǎn)中過(guò)度表達(dá)(圖6A)。同樣,在120 min鹽脅迫(T120/T0)下,在磷酸化位點(diǎn)中,分別有4個(gè)motif(SP、SDxE、SDxD和SxxE)和3個(gè)motif(SP、RxxS、SxxE)的水平升高或降低(圖6B)。兩種處理(T120/T30)的比較顯示,在120 min鹽脅迫下,兩個(gè)motif(SP、SD)和motif(SP)在磷酸化位點(diǎn)中被過(guò)度表達(dá),分別表現(xiàn)出更高和更低的磷酸化水平(圖6C)。
在所有處理中,富含脯氨酸的motif (SP)在上調(diào)和下調(diào)的磷酸位點(diǎn)中都被過(guò)度表達(dá),并且通過(guò)PRM進(jìn)一步驗(yàn)證了β-淀粉酶1 (BAM1)上含有S55的一個(gè)motif (圖6)。緊接著作者鑒定了5個(gè)CDPKs的12個(gè)磷酸位點(diǎn)和3個(gè)MAPK上的4個(gè)磷酸位點(diǎn),包括MPK19激活環(huán)上的一個(gè)磷酸位點(diǎn),這些激酶被認(rèn)為和鹽脅迫相關(guān)。綜上所述,包括MAPKs和CDPKs在內(nèi)的多種激酶在鹽脅迫中起作用。

圖6 磷酸化對(duì)鹽脅迫的反應(yīng)
除了激酶外,在簇1、2和4中剪接體被KEGG通路顯著富集 (圖5),暗示磷酸化調(diào)控mRNA的可變剪接,是植物響應(yīng)脅迫的關(guān)鍵過(guò)程。在鹽脅迫下,18個(gè)剪接體蛋白上共有28個(gè)不同的位點(diǎn)被差異磷酸化 (圖7)。利用PRM進(jìn)一步驗(yàn)證了Y209在SCL30上的差異磷酸化(圖6)。據(jù)報(bào)道,RNA解旋酶及其磷酸化對(duì)剪接體的組裝至關(guān)重要。在鹽脅迫30分鐘后,Prp5的S210、S442和S444位點(diǎn)磷酸化增加,并在120分鐘后保持高水平,Prp19的多個(gè)亞基也觀察到類(lèi)似的磷酸化模式(圖7)。盡管這些差異磷酸化事件的意義尚未得到明確的證明,但它們可能參與了鹽脅迫誘導(dǎo)的mRNA剪接的調(diào)控。

圖7 鹽脅迫誘導(dǎo)剪接體蛋白的差異磷酸化
研究總結(jié)
GreenPhos不僅極大地提高了植物磷酸化蛋白質(zhì)組的解析效率,而且也顯著地減低了實(shí)驗(yàn)操作的難度和成本,為更深入地理解蛋白質(zhì)磷酸化在植物生命過(guò)程中的功能提供了強(qiáng)有力的工具。該研究成果將有效推進(jìn)磷酸化蛋白質(zhì)組學(xué)與植物生物學(xué)和農(nóng)學(xué)等領(lǐng)域的交叉融合,在發(fā)掘與作物產(chǎn)量、品質(zhì)以及抗逆密切相關(guān)的磷酸化蛋白及其位點(diǎn)中有著廣泛的應(yīng)用前景。
Duan?X,?Zhang?Y,?Huang?X,?Ma?X,?Gao?H,?Wang?Y,?Xiao?Z,?Huang?C,?Wang?Z,?Li?B,?Yang?W,?Wang?Y.?GreenPhos,?a?universal?method?for?in-depth?measurement?of?plant?phosphoproteomes?with?high?quantitative?reproducibility.?Mol?Plant.?2023?Nov?27:S1674-2052(23)00393-3.?doi:?10.1016/j.molp.2023.11.010.?Epub?ahead?of?print.?PMID:?38018035.