1、打開腳本文件
source(‘xxx’) #’xxx’腳本路徑, 例如’C:/Users/R/Desktop/qq.R’
2、創(chuàng)建Seurat對象并繪制空間聚類圖
FilePath : 存放“barcode.tsv.gz、barcode_pos.tsv.gz、feature.tsv.gz、matrix.mtx.gz”的文件夾路徑
barcode_pos_file : “barcode_pos.tsv.gz”的文件路徑
out_path : 輸出文件目錄
png_path : he染色(.png格式),如果是 .tiff 格式需要進行格式轉(zhuǎn)換,注意轉(zhuǎn)換時分辨率可適當調(diào)小,以避免 .png 格式的圖片太大而讀取失敗
需注意的是Seurat對象名稱必須是“object”
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/Cluster/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
min.cells = 10, #一個基因至少在n個細胞中表達才被保留,可自行調(diào)整,默認值10
min.features = 100, #一個細胞至少有n個基因才被保留,可自行調(diào)整,默認值100
dims = 1:30, #選擇多少pc進行后續(xù)分析,可自行調(diào)整,默認1:30
resolution = 0.5, #設(shè)置下游分析的“粒度”,值越高得到的聚類數(shù)目越多,可自行調(diào)整,默認0.5
point_size = 3, #點的大小,可自行根據(jù)矩陣文件level調(diào)整,level越小需設(shè)置的值越小
width = 12, #輸出圖片的寬度,可自行調(diào)整,默認12
height = 5, #輸出圖片的高度,可自行調(diào)整,默認5
Cluster = T, #是否進行聚類分析,默認F
label = T #是否輸出帶標簽的聚類圖
)

umap_cluster_label
3、UMI統(tǒng)計
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/UMI_stat/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 3, #同上
width = 12, #同上
height = 5, #同上
UMI_stat = T) #是否統(tǒng)計UMI

UMI_viol_heatmap
4、nFeature 統(tǒng)計
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/Gene_stat/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 2, #同上
width = 12, #同上
height = 5, #同上
nFeature_stat = T) #是否統(tǒng)計nFeature

nFeature_viol_heatmap
5、輸出每個cluster的marker gene,并繪制單個基因的表達熱圖
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/Single_gene_1/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 2, #同上
Gene_stat = T, #是否進行mark gene繪制
top_gene = 1, #每個cluster取top多少mark gene, 可自行調(diào)整,值不宜設(shè)置太大
min.pct = 0.25, #一個基因在任何兩群細胞中的占比不能低于多少, 可自行調(diào)整
logfc.threshold = 0.25, #差異倍數(shù)閾值, 可自行調(diào)整
markpic_width = 8, #小提琴圖和tsne圖寬
markpic_height = 12, #小提琴圖和tsne圖長)

熱圖列表
6、繪制某個或某些基因聚類圖
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/Test/Single_gene_2/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 2.6, #同上
Gene_stat = T, #是否進行mark gene繪制
Custom_gene = T, #是否進行自定義gene繪制
alpha_continuous = c(0.5,1) #根據(jù)基因表達量調(diào)整透明度范圍
gene_list = c(‘Hpca’)) #繪制的基因名,可以輸入多個

Hpca
選擇黑色背景突出顯示
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/Test/Single_gene_2/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 2.6, #同上
Gene_stat = T, #是否進行mark gene繪制
Custom_gene = T, #是否進行自定義gene繪制
dark_background = T, #黑色背景
gene_list = c(‘Hpca’)) #繪制的基因名,可以輸入多個

Hpca
7、繪制單個cluster聚類圖
object?<-?Create_object(
FilePath = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/’,
barcode_pos_file = ‘E:/AAAWork/BSTViewer_project/subdata/L13_heAuto/barcodes_pos.tsv.gz’,
out_path = ‘C:/Users/R/Desktop/temp/TestL6/single/’,
png_path = ‘C:/Users/R/Desktop/temp/he.png’,
point_size = 2, #同上
Single_cluster = T #是否繪制單個cluster圖)

cluster1

單個cluster列表