91肥熟国产老肥熟女,亚洲天堂在线观看视频,国产真实乱婬A片三区高清蜜臀,国产做受91 一片二
 分類: 醫(yī)學研究
?隨著癌癥基因組學的進步, 突變注釋格式+Specification) (MAF) 被廣泛用于存儲檢測到的somatic variants。上期已經(jīng)為大家介紹了腫瘤突變數(shù)據(jù)分析神器:maftools,今天再給大家介紹一款癌癥基因?qū)W研究利器,無往不利的基因瀑布圖(oncoplot)和熱圖組合,發(fā)表級別的圖譜繪制。

將多圖組合到一起;用到R包ComplexHeatmap;

此圖中包含兩種基本圖,一種是基因瀑布圖,另外一種是熱圖。

腳本如下:

setwd("F:/work/個性化/基因瀑布圖") test<-read.delim("test.txt",?header=TRUE?,check.names?=?F) #此處讀取的是四個文件的基因交集,只有一列基因,這樣最后呈現(xiàn)的圖的樣本和基因個數(shù)一樣。 library(ComplexHeatmap) png("test.png",type="cairo",width=2000,height=800) color.1?<-?colorRampPalette(rev(c("red",?"white",?"#3CB34E")))(100) data<-?read.delim("mRNA_fpkm.list",?row.names?=?1,?header=TRUE?,check.names?=?F) row.names(data)<-data$Symbol data<-data[which(rownames(data)%in%test$gene_symbol),] data=?data[,?-1] data?<-?log10(data+0.000001) data<-as.matrix(data) ht1<-Heatmap(data,col=color.1,cluster_columns??=?T,cluster_rows?=?F,name="gene",column_title?=?"gene",show_row_names?=?T,show_column_names?=?T) #此處既顯示樣品名又顯示基因名 col<-c("frameshift_mutation"="red","other"="#3CB34E","nonsynonymous_SNV"="red") alter_fun<-list( ??background=function(x,y,w,h){ ????grid.rect(x,y,w-unit(0.5,"mm"),h-unit(0.5,"mm"), ??????????????gp=gpar(fill="#cccccc",col=NA)) ??}, ??frameshift_mutation=function(x,y,w,h){ ????grid.rect(x,y,w-unit(0.5,"mm"),h-unit(0.5,"mm"), ??????????????gp=gpar(fill=col["frameshift_mutation"],col=NA)) ??}, ??other=function(x,y,w,h){ ????grid.rect(x,y,w-unit(0.5,"mm"),h-unit(0.5,"mm"), ??????????????gp=gpar(fill=col["other"],col=NA)) ??}, ??nonsynonymous_SNV=function(x,y,w,h){ ????grid.rect(x,y,w-unit(0.5,"mm"),h-unit(0.5,"mm"), ??????????????gp=gpar(fill=col["nonsynonymous_SNV"],col=NA)) ??} ) library(do) mat?<-read.table("indel_keygene.xls",head=T,sep="\t",stringsAsFactors?=?FALSE)

 

#此處導入處理后的indel文件,格式如圖:

rownames(mat)<-mat$Gene mat<-mat[which(rownames(mat)%in%test$gene_symbol),] mat<-mat[,-1] mat[is.na(mat)]<-"" mat<-Replace(mat,from?=?"^.$",to?=?"?",pattern?=?"") #此處Replace是R包do中的函數(shù),將文件中的內(nèi)容替換成自己所需要的內(nèi)容 mat<-Replace(mat,from?=?"^,.",to?=?"?",pattern?=?"") mat<-Replace(mat,from?=?",.$",to?=?"?",pattern?=?"") mat<-Replace(mat,from?=?"^.,",to?=?"?",pattern?=?"") mat<-Replace(mat,from?=?"nonframeshift?deletion,frameshift?deletion",to?=?"frameshift_mutation",pattern?=?"") mat<-Replace(mat,from?=?"frameshift?deletion,nonframeshift?deletion",to?=?"frameshift_mutation",pattern?=?"") mat<-Replace(mat,from?=?"nonframeshift?deletion",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"nonframeshift?insertion",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"frameshift?deletion",to?=?"frameshift_mutation",pattern?=?"") mat<-Replace(mat,from?=?"frameshift?insertion",to?=?"frameshift_mutation",pattern?=?"") mat<-Replace(mat,from?=?"unknown",to?=?"other",pattern?=?"") #oncoPrint(mat) #指定變異類型的標簽,和數(shù)據(jù)中的類型對應 heatmap_legend_param<-list(title="Indel",at=c("frameshift_mutation",?"other"),labels=c("frameshift_mutation",?"other")) #設(shè)定標題 column_title<-"Indel?Oncoplot" ht2<-oncoPrint(mat,alter_fun?=?alter_fun,col=col,column_title=column_title,heatmap_legend_param?=?heatmap_legend_param,remove_empty_columns?=?F,remove_empty_rows?=?F,show_column_names?=?T,show_row_names?=T) mat?<-read.table("keygene.SNP.xls",head=T,sep="\t",stringsAsFactors?=?FALSE)

 

#導入SNP文件,格式如圖

rownames(mat)<-mat$Gene mat<-mat[which(rownames(mat)%in%test$gene_symbol),] mat<-mat[,-1] mat[is.na(mat)]<-"" #mat<-str_replace("nonframeshift?insertion","other","") mat<-Replace(mat,from?=?"^.$",to?=?"",pattern?=?"") mat<-Replace(mat,from?=?"^,.",to?=?"",pattern?=?"") mat<-Replace(mat,from?=?",.$",to?=?"",pattern?=?"") mat<-Replace(mat,from?=?"^.,",to?=?"",pattern?=?"") mat<-Replace(mat,from?=?"stopgain",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"stoploss",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"unknown",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"^synonymous?SNV$",to?=?"other",pattern?=?"") mat<-Replace(mat,from?=?"^nonsynonymous?SNV$",to?=?"nonsynonymous_SNV",pattern?=?"") mat<-Replace(mat,from?=?"synonymous?SNV,nonsynonymous?SNV",to?=?"nonsynonymous_SNV",pattern?=?"") mat<-Replace(mat,from?=?"nonsynonymous?SNV,synonymous?SNV",to?=?"nonsynonymous_SNV",pattern?=?"") #oncoPrint(mat) mat<-as.matrix(mat) #指定變異類型的標簽,和數(shù)據(jù)中的類型對應 heatmap_legend_param<-list(title="SNP",at=c("nonsynonymous_SNV",?"other"),labels=c("nonsynonymous_SNV",?"other")) #設(shè)定標題 column_title<-"SNP?Oncoplot" ht3<-oncoPrint(mat,alter_fun?=?alter_fun,col=col,column_title=column_title,heatmap_legend_param?=?heatmap_legend_param,remove_empty_columns?=?F,remove_empty_rows?=?F,show_column_names?=?T,show_row_names?=T) data<-?read.delim("ATAC_promoter_1kb.xls",?row.names?=?1,?header=TRUE?,check.names?=?F) row.names(data)<-data$gene_symbol data<-data[which(rownames(data)%in%test$gene_symbol),] data=?data[,?5:19] data[is.na(data)]<-0 data<-data[which(rowSums(data)>0),] data?<-?log10(data+0.000001) data<-as.matrix(data) library(ComplexHeatmap) color.1?<-?colorRampPalette(rev(c("red",?"white",?"#3CB34E")))(100) ht4<-Heatmap(data,col=color.1,cluster_columns??=?T,cluster_rows?=?F,name?=?"ATAC_promoter_1kb",column_title?=?"ATAC_promoter_1kb",show_row_names?=?T,show_column_names?=?T) draw(ht1+ht2+ht3+ht4,gap=unit(0.8,"cm")) dev.off()

 

其中需要注意的是當有多個基因瀑布圖時,alter_fun和col需在同一條命令中設(shè)置。通過以上一頓操作,快速將基因瀑布圖和熱圖組合在一起,既展示了基因的結(jié)構(gòu)變異、開放狀態(tài)、基因表達,呈現(xiàn)多組學的角度探討疾病發(fā)生發(fā)展。這不就完成了Fig1還升華了Fig1的深度。

再多的操作文檔,總是不如實際操作來得理解深刻。百邁客云平臺(BMKCloud)實現(xiàn)你零基礎(chǔ)分析的所有夢想!52款APP實現(xiàn)高度自由個性化分析,118款工具、交互的個性化分析提供無上限分析實操,云平臺課堂高效助您方案設(shè)計和信息分析(http://www.biocloud.net/),百邁客云成為您的私人信息分析平臺,讓基因分析更簡單。

所以大家快快動起手來,在實際操作中理解學習,若在學習中有不懂或疑問的地方,您可以點擊下方按鈕與我們聯(lián)系,我們可以提供相應的分析服務。

立即咨詢

最近文章